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Abslract. In the present paper we report on the results of the Monte Carlo simulation of the 
time of Right (mF) experiment for r and I-& hopping tnnsport in highly defected very thin 
crystalline layers. The defects are wnsidered as localized states. behveen which a hopping 
motion of the injected carriers is possible. The @tal (integrated over energy) density of defects 
is assumed to be spatially non-uniform on the macroscopic sule, i.e. the scale comparable 
with lhe layer thickness. In particular, we consider an exponential dependence of the total 
density of hopping centres on the dismce from the layer contacts. The results of simulations 
performed for various defect concenuations, various defect distributions in energy, and various 
degrees of the layer spatial non-uniformity are discussed. I1 is shown that both r and ,--E 

hopping UanSient currents measured in the classical TOF experiment are highly sensitive to the 
spatial macroscopic scale variations of the total centre concentation. The delailed shape of the 
transients depends in a complicated way on the system dilution, the energetic centre distribution, 
and the character of the spatial variations of the total centre density. The existence of the spatial 
non-uniformity of the layer could be recognized experimentally by observation of the qualitative 
changes of the curre01 shape with increasing temperature, which leads to lower dispersion, and 
thus more pronounced characteristic features of the x-dependent total centre density, such as a 
higher polarity dependence. or the appearance of the current maxima or plateaux just before the 
effective TOF. 

1. Introduction 

One of the classical method for determination of the microscopic transport parameters is the 
analysis of the results obtained in the time of flight (TOF) experiment (see, e.g., Marshall 
1983% Marshall and Main 1983, Marshall et ~l 1985, Weissmiller 1985, Muller-Horsche et 
~l 1987, Di Marco eta1 1989, Seynhaeve etnl 1988). In this experiment an infinitesimally 
thin sheet of charge camers is produced near one of the surfaces of a thin layer placed 
between two contacts, and subject to an external electric field. The subsequent motion of 
the carriers towards the collecting contact results in a transient current, which is analysed in 
an external circuit connected to the sample. The theory of the TOF experiment (Scher and 
Montroll 1975, Schmidlin 1977a, b, Arkhipov and Rudenko 1982, Rudenko and Arkhipov 
1982a, b) permits us to perform an extensive analysis of the transient currents measured 
in the macroscopically uniform layers. However, a number of phenomena can introduce 
the macroscopic scale variations of the total density of traps or hopping centres over the 
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layer thickness (see, cg., Kao and Hwang 1981 p 150. Sam06 and Zboidski 1978), which 
can be of crucial importance in the case of very thin layers. Thus, a straightforward 
application of the theory developed for spatially uniform layers cannot be reliable. For 
the multiple-trapping transport mechanism (i.e. a band transport interrupted by trapping 
elents; a temporarily immobilized carrier is thermally re-emitted into the conduction band) 
the influence of the spatial non-uniformity in the trap distribution on the transient currents, 
measured in the constant-temperature 70F experiment, as well as in the thermally stimulated 
TOP experiment, has been investigated by Rybicki and Chpbicki (1988, 1989), Rybicki etal 
(1990, 1991b), and Tomaszewicz eta/ (1990). and some simple formulas for determination, 
or at least estimation, of the spatial distribution of the multiple-trapping centres have been 
proposed. The TOF transient currents are intensively studied also in materials that reveal a 
hopping mechanism of transport (carrier tunnelling or thermally activated tunnelling between 
localized states; see, cg., Emoto and Kotani 1983. Bassler etal 1982, Bassler 1984, Schein 
et al 1986, Yuh and Stolka 1988, Abkowitz er al 1989). The measurement interpretation 
for the hopping transport mechanism is more difficult than in the case of multiple-trapping 
transport, and computer experiments (Monte Carlo simulations) are often performed in order 
to elucidate certain features of the hopping transport in materials characterized by diagonal 
and/or off-diagonal disorder (see, e.g. Adler and Silver 1982, Marshall 1978. 1981, 1983b, 
Marshall and Sharp 1980, Ries and Bassler 1987, Pautmeier erol 1989, Richert eta1 1989 (in 
macroscopically uniform layers) Rybicki et al 1992, 1993 (in macroscopically non-uniform 
amorphous layers)). 

In the present paper we deal with the influence of a spatial non-uniformity of the 
macroscopic scale hopping centre distribution on the TOF transient currents in the case of 
crystalline materials. In section 2 we describe in brief the Monte Carlo algorithm we have 
applied. The simulation results showing the TOF transient currents in their dependence on 
various model spatial and energetic distributions of hopping centres Nh(X. E) are presented 
and discussed in section 3. Section 4 contains concluding remarks. 

2. The simulation algorithm 

We consider a thin layer of thickness L placed between two planar contacts (one at x = 0 
and one at x = L )  with an x-dependent total density of hopping centres. At f = 0 an 
infinitesimally thin sheet of carriers is generated on the left contact ( x  = 0). The applied 
external electric field E enforces the carrier motion towards the x = L contact. The field 
E is held constant and uniform, so that no space charge effects are included. The transport 
mechanism to be considered is r--E hopping, i.e. hopping between defects, acting as hopping 
centres, and distributed at random in energy E,  according to a given distribution f(&), and 
at random over the crystal lattice, with a total local concentration N o S ( x ) ,  where S(x)  is 
a rather slowly varying function of x .  The centre distribution can be thus written in the 
factorized form as 

where the energetic distribution f(&) is normalized: 
m /" f(&)d.c=I 

J-CC 

and S(x;  D) is in general a one-parameter ( D )  family of x-dependent functions, describing 
the spatial variations of the total local centre density. The particular form of S(x ;  D) used in 
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this work will be specified in the end of the section. No(D) is a D-dependent normalization 
factor chosen in such a way that 

does not depend on D, and is the total number of centres in the layer per unit surface 
of the contact. The simple functional form of (1) imposes a strong limitation on possible 
centre distributions in space and in energy, e.g. excluding from our considerations the case of 
interacting defects, where f ( E )  could depend on the total local centre density N o ( D ) S ( x ;  D). 
However, the factorized expression (1) is sufficiently flexible to cover a rather wide range 
of possible centre distributions in x and E .  The simulation system is similar to that used by 
Ries and Bassler (1987): a regular cubic lattice containing 70 x 50 x 50 sites with periodic 
boundary conditions imposed in directions perpendicular to the applied field. A fraction 
c of the total number of the lattice nodes is chosen as hopping centres, and distributed 
along the direction of the external field E according to S ( x ;  D). The energies taken from 
the normalized distribution f ( ~ )  are then assigned to the transport sites. The remaining 
fraction 1 - c of the lattice nodes is labelled as host sites not participating in the transport 
process. 

The transient currents were calculated from the time and spatial evolution of the injected 
carrier packet n ( x ,  t )  during its motion towards x = L, according to the expression 

(see, e.g., Leal Ferreira 1977). where j ( t )  is the particle current per carrier and no is the 
total number of injected carriers. The applied increment of log r was equal to 0.1 or 0.05. 
The carrier packets n ( x .  t )  were obtained by averaging the random walks of 3000 individual 
carrier (20 carriers for each of 150 site generations). The random walk of each individual 
carrier was started at x = 0 and t = 0, and finished on arriving to the collecting electrode 
a t x = L .  

An individual hop from a given occupied centre, say at ro, to one of the neighbouring 
empty centres, located at ~ i ,  i = 1, . . . ,342 (from a 7 x 7 x 7 cube centred on TO), has 
been realized as follows. The average jump rate uoi of the hop from the centre at TO to the 
ith neighbour at T,  is given by (see, e.g., Ries and Bassler 1987) 

UoeXp(-2O1iTo - Til)eXp(-AUoi/kT) AUoj > 0 

AUoj < 0 
(3) I voexp(-ZlyI~o - rJ)  

VOC = 

where 

AUo, = -80 - q E ( x ,  - XO) .  (4) 

According to the average jump rates uoi (3)-(4), random jump rates vi are chosen from an 
exponential distribution. The probability pi of the jump to the ith centre is given by 

and the most probable jump is accepted in the simulations. In equations (3x3, 01 is the 
reciprocal Bohr radius, EO and &i are the energies of the actually occupied centre and the 
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ith neighbouring unoccupied centre, vo is the frequency factor, q is the elementary charge, 
T is the temperature, and k is the Boltzmann constant. 

Let us now specify the function S(x ;  D )  and f(&) from (1). I n  order to investigate 
qualitatively the influence of the macroscopic non-uniformity of the spatial centre 
distribution, we performed our simulations for exponential variations of the centre 
concentration in the function of x. Such a spatial distribution of hopping centres corresponds 
to diffusive, or radiative, origin of the defects. In particular, the results presented in the 
following section were obtained for 

S(x;  D )  = exp(-xjD) (6) 

and 

S(x;  D )  = exp(-(L - x ) / D )  (7) 

where D is a concentration decay (increase) parameter. The degree of the layer non- 
uniformity may be conveniently expressed as LID. LID = 0 corresponds to the uniform 
spatial distribution. As far as the energetic centre distribution f(&) is concerned, we used 
the normalized Gaussian diswibution of half width u/kT, For u/kT close to zero we have 
a discrete energy level, which corresponds to r hopping (nearest-neighbour hopping). 

The simulations have been performed for the systems with various values of the 
parameters in the following ranges: average total concentration c of hopping centres, 
0.1 < c < 1.0; half width U of the Gaussian distribution in energy, 0.0 < U < 7.0kT; 
spatial non-uniformity parameter LID,  0.0 < L/D < 3.0. The parameters common to all 
the simulations are (cf Ries and Bassler 1987) a cubic lattice constant d = 7 x lo-'' m. 
a wave-function overlap parameter 2da = 5.0, where a is the reciprocal Bohr radius, a 
temperature T = 400 K, and an external electric field E = 1.1 x 10' V m-'. The time is 
normalized to l/u = r ,  where U = 6u0 exp(-Ua). T is the average dwell time of a carrier 
located at a site of an undiluted (c = 1.0) cubic lattice with six nearest neighbours. 

3. Simulation results 

Prior to presenting the influence of the spatial macroscopic scale non-uniformity of the total 
centre concentration on the r and r-& hopping TOF signals (subsections 3.2 and 3.3), we 
shall show separately the pure effects of decreasing total centre concentration, and increasing 
width of the Gaussian energetic distribution, in spatially uniform layers (subsection 3.1, cf 
Ries and Bassler 1987). 

3.1. Spatially uniform Layers 

In figure 1 we show several transient currents calculated from (2) for the x-independent 
(constant over the layer thickness) average spatial centre density without any energetic 
disorder (figure l(A)). which corresponds to the nearest-neighbour hopping ( r  hopping), 
and with centres distributed in energy according to the Gaussian distribution (figure l(B) 
and (C)), which corresponds to the variable-range hopping (r-8 hopping). In each figure 
the only parameter being changed is the average centre concentration c. Figure 2 shows the 
histograms of the numbers of jumps performed by the carriers during their random walk 
from x = 0 to x = L. As is seen from figure 2, dispersion of the total numbers of hops 
increases rapidly with decreasing site concentration c, and also with increasing width of 
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the energetic distribution U ,  in accordance with the increasing dispersive character of the 
transients in figure 1. Initial slopes 1 - 01 of the r--E hopping transient currents in spatially 
uniform layers obey only approximately the formula of Schonherr et a1 (1980). which reads 
CY-' = (u/4v'%T)'+ 1, and does not predict any dependence of the slope on c .  The slopes 
1 - (Y obtained in our simulations depend on the site concentration c. The best agreement 
with the mentioned formula is found for c 0.5 (e 2%); for higher (lower) concentrations 
the slopes are smaller (greater) than predicted by Schonherr et a1 (1980) (by - 10% for 
c = 1 .O and c = 0.1). The slopes 1 + ,9 of the final current decay decrease on decreasing 
defect concentration, and/or on increasing width of the centre distribution in energy (cf 
figure 7(A) below). 

0 1  2 3 4  5 6 2 3 4 5 6 7 8  
- (U )  b* WI loo( <I 

Figure 1. Transient currents for various hopping entre cancentrations e for spatially uniform 
systems: curves a, c = 1.0; curves b, c = 0.5; curves c, c = 0.2; curves d, e = 0.1; (A) 
a = 0.OkT; (B) a = 3.5kT; (C) a =7.OkT. 

3.2. Spatially non-uniform layers-current profiles 

Let us turn to the influence of the spatial non-uniformity of the centre distribution on the 
reference TOF transient currents shown above. For the spatial centre distribution (6) the 
hopping carriers moving towards x = L, with increasing x ,  enter a region of lower centre 
density, and thus their motion is slowed down. For the spatial centre distribution (7), 
the centre density increasing with x makes the carrier motion easier near the collecting 
electrode. Figure 3 shows typical spatial distribution n(x, t )  of hopping carriers at the same 
time (ur = 104) after the injection into the layer with a given concentration c (c = 0.2), 
for the centre concentration increasing and decreasing e3 times over the layer thickness (0 
and 0 respectively), and also for a uniform spatial centre distribution (0). Figure 3 ( A )  
refers to r hopping (U = O.OkT), figure 3 @ )  to r--E hopping (with U = 3.5kT) .  For spatial 
distribution (7), the caniers begin their random walk in the low-concentration region, and 
spend a relatively (in respect to the effective TOF) long period of time in the immediate 
proximity of the injecting contact. Due to the presence of deep tail centres in the case of r--E 
hopping, up to the given moment of time, the carrier packet for a = O.OkT (figure 3(A)) 
has penetrated a longer distance from x = 0 than the packet with U = 3.5kT (figure 3(B)). 
For the uniform spatial centre distribution (V), the considered time ut = lo4 is somewhat 
greater than the effective TOF for r hopping (figure 3(A); cf curve c in figure l(A)), and 
within the sample only few carriers remain (note a logarithmic scale on the vertical axis). 
For r-& hopping, uf = lo4 remains well below the effective TOF (cf curve c in figure l(B)) 
and we can see a well developed carrier packet. For spatial distribution (6),  the carriers 
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Figure 2. Histogma of thc total numbers ofjumps performed by the carriers during their walk 
from x = 0 to x = L ,  for concentrations e = 1.0, 0.2, and 0.1, and for energetic distribution 
half width U = OakT (r hopping) and a = 3.5kT (r-& hopping). The heights of the columns 
mmpond to the numbers of carders that performed given numbers of hops. The histogram 
resolution is 100 hops. The average hopping centre density is uniform over the layer thickness. 

begin their random walk in the high-concentration region, and within a relatively short 
time leave the region close to !he injecting contact. The carrier packets remain then for a 
relatively long time in the central pari of the layer, trying to penetrate the low-concentration 
region near x = L. Such a behaviour of the cmier packets has a remarkable influence on 
the mF current profiles. Figures 4-6 show the influence of the degree of the layer spatial 
non-uniformity L I D  on the currents for c = 0.5, 0.2, and 0.1. 

Let us consider first the case of decreasing total concentration of hopping centres (6). 
The initial value of the current obviously depends on the actual ratio L I D ,  because the 
number of hopping centres on the injecting contact ( x  = 0) is different for different values 
of L I D .  With increasing degree of non-uniformity, L I D ,  the average slopes before the 
effective TOF increase, and thus, roughly speaking, the increase of L I D  acts qualitatively 
like a decrease of the centre concentration c, and/or an increase of the energetic distribution 
width B. However, there is an important difference in temporal variations of the cument 
slope. In uniform stlllc!ures the current initially decays more rapidly than just before the 
effective TOF (figure I),  due to the carrier relaxation in energy (Ries et a1 1988, Pautmeier 
et a1 1989). In contrast, in sufficiently non-uniform layers (for the parameters used here 
L I D  1) with a total centre concentration decreasing with increasing x ,  the effect is 
dominated by the influence of increasing (with x )  average distance between the transport 
sites, and the current profile is steeper immediately before the TOF than at much shorter 
times, when the most rapid carrier relaxation in energy occurs. AAer the effective KIF the 
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Figure 3. Spatial distributions of the carrier packets at the same time after injection, for different 
spatial distributions of hopping centres: V, LID = 0.0; e, distribution (6). L I D  = 3.0, 0, 
distribution (7). L I D  = 3.0. (A) a = O.0kT: (B) a = 3.5kT. In both p m  ut = IO' and 
e = 0.2. 

currents decrease more slowly for higher L I D ,  so that the increasing non-uniformity acts 
qualitatively again like a decrease of c,  and/or an increase of U .  For a higher degree of 
the spatial non-uniformity ( L I D  x 3.0), a wider half width U of the energetic distribution 
(U % lO.OkT), and a lower defect concentration (c % O.l), the effective TOF is  difficult to 
determine, the whole transient being a current decay of slope close to -1. 

For total defect density increasing with x (7) the effect of the spatial non-uniformity is 
quite different. For short times the current profiles are even steeper than the corresponding 
transients in uniform systems, but at longer times after injection the rate of the current 
decay decreases to zero, and, for sufficiently dense systems, a sufficient value of the non- 
uniformity parameter (and not too wide energetic centre distribution), a current increase is 
observed, which reflects an exponential increase of the effective carrier packet drift velocity 
near the collecting contact. The occurrence of the current maxima immediately before the 
final current decay in a quite wide range of the parameters is the most characteristic feature 
of the carrier transport in the layers with total centre density increasing with x .  After the 
effective TOF the current slopes decrease with increasing degree of non-uniformity, LID,  
similarly as for distribution (6). 

The comparison of the curves for the same ratio L I D  and different spatial Centre 
distributions (6) and (7) (and the same c and U) shows thus a remarkable polarity dependence 
of transient currents (cf for example figure 4(C) and (D) for U = O.OkT, and figure 5(C) 
and (D) for U = 3.5kT). Note that strong differences due to the reversed polarity occur 
only in the initial parts of the transients (before the effective TOF). In contrast, the slopes 
of the final current decay remain always linear in the log-log scale, and practically do not 
depend on the polarity for r--E hopping (the final parts of curves denoted by a, b, c, and d in 
figure 5(C) and (D) and of curves a and h in figure 6(B) are almost exactly parallel), so the 
value of the non-uniformity parameter L I D  changes the slope of the final current decay in 
the same way for both spatial distributions, (6) and (7). The dependence of the final decay 
slope on various parameters is shown in more detail in figure 7. The upper and two lower 
curves in figure 7(A) correspond to spatially uniform layers. 1 + f l  depends strongly on c 
for r hopping (U % O.OkT), and a slight polarity dependence appears (the two middle lines 
in figure 7(A), drawn for L I D  = 1.0 for both polarities). For larger L I D  the polarity and 
concentration dependence are negligible. On increasing U the dependence of 1 + p on c 



2994 J Rybicki et a1 

-12 

-14 

l09(*1 

Figure 4. I hopping (0 = 0.OkT) uansient currents for various Centre concentrations c and 
various degrees of non-uniformity L I D .  (A) c = 0.5; curve a, L I D  = 0.0; curve b, L I D  = I .O, 
spatial distribution (6). curye c, L I D  = 1.0, spatial distribution (7); (B) c = 0.1; curve a, 
L I D  = 0.0: curve b, L I D  = 1.0, spatial distn'bution (6); curve c. L I D  = 1.0. spatial 
disuibution (7); (C) e = 0.2, Spatial disvibution (7); curve B L I D  = 0.0; CUNe b, L I D  = 1.0: 
curye c, L I D  = 2.0: curve d, L I D  = 3.0: (D) c = 0.2, spatial distribution (6): curve a, 
L I D  = 0.0; curve b, L I D  = 1.0: CUNe c, L I D  =2.0: curve d, L I D  = 3.0. 

becomes marginal even for uniform layers, and the final slopes are not influenced by the 
L j D  value, nor the polarity (figure 7(B) filled and empty squares for spatial distributions (6) 
and (7) respectively). 

3.3. Spatially non-uniform layers-effecrive TOF and hop statistics 

The effective TOF is an important characteristic of the current profiles. It is usually 
determined from the intersection of the straight lines tangential to the current profile before 
and after the change of the slope due to the arrival of the carrier packet at the collecting 
electrode. The values of the TOF determined in such a standard way in uniform layers are 
shown in figure 8(A) with empty symbols. The logarithm of TOF depends non-linearly on c,  
and increases strongly in the low-concentration limit. The determination of the effective TOP 
in not as straightforward in the case of non-uniform layers. For the current profiles that show 
distinct peaks we have estimated the TOFs as the intersection of the line tangential to the 
current at the inflection point on the left side of the maximum, and the line tangential to the 
final current decay. For the transients with no peaks with spatial distribution (7), and for the 
currents with spatial distribution (6). the TOF determination is much more arbitrary. Despite 
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0 1 2 3 4 5 6 7  

log (vi) - .  . 
Figure 5. r-E hopping transient c u r e m  with a = 3.5kT, for various centre concentrations 
c and various degrees of non-uniformity LID. (A) c = 0.5, curve a. LID = 0.0; curve b, 
LID  = 1.0, spatial distribution (6); curve c. LID = 1.0, spatial distribution (7); (B) c = 0.1; 
curve a. LID = 0.0: curve b. LID = 1.0. spatial distribution (6); curve c, LID  = 1.0, spatial 
distribution (7); (C) c = 0.2, spatial distribution (7); curve a, LID = 0.0; c w e  b, LID = 1.0; 
curve c, LID = 2.0, curve d. L I D  = 3.0; (D) c = 0.2. spatial distribution (6); c w e  a, 
LID  = 0.0; curve b. LID = 1.0; curve c, LID = 2.0: C U N ~  d, LID = 3.0, 

the uncertainty about the exact values, the TOFS seem to be independent of the layer polarity 
(the same L I D  in (6) and (7)). The values marked in figure 8(A) with full symbols are the 
arithmetic averages of the TOF estimations with spatial centre distributions (6) and (7). As 
seen, the layer non-uniformity does not influence the qualitative concentration dependence 
of the effective TOF. The dependence of the TOP on the non-uniformity parameter L f D is 
shown in more detail in figure 8(B) (for various values of U, and a given centre concentration 
c). For wider energetic distributions the L I D  dependence of the effective TOF is negligible, 
whereas for narrower energetic cenlre distributions it remains approximately linear. 

Let us finally see how the distributions of the total numbers of hops performed between 
x = 0.0 and x = L are influenced by the layer non-uniformity. Figure 9 shows the 
corresponding histograms for various values of L I D .  As is seen, increasing LID parameter 
introduces generally more dispersion, similarly to increasing U, andor decreasing c. The 
widening of the distributions of total numbers of hops performed between x = 0 and x = L 
due to increasing L I D ,  however, proceeds in a different way than that due to increasing 
U and/or decreasing c. In the latter case the increase of the dispersive character of the 
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Fiyre 6. r-e hopping tnnsienl currents with a = 7 .0kT .  for various centre concentntiom c and 
various degrees of non-uniformity LID. (A) c = 0.5; middle curve, LID = 0.0, upper curve, 
LID = 1.0, spatial distribution (6); lower CUNe LID = 1.0. spatial distribution (7) .  (B) c = 0.1: 
curve a. L I D  = 3.0, spatial distribution (6): curve b. LID = 3.0. spatial distribution (7) .  

20 5 

4 i s  
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0.0 0.2 0.4 0.6 0.8 1.0 00 i o  20 30 

COmentiatlOn c LID 
Fiyre 7. Final slopes I + ,6 3s functions of concentntion c (A) and non-uniformity parameter 
LID @). (A) Curve a. LID = 0.0, a = O.OkT; curve b. LID = 0.0, a = 3.5kT; curve c, 
LID = 0.0, d = 7.0kT: curve d, LID = 1.0. spatial distribution (6). c = O.OkT; curve e, 
LID = 1.0, spatial distribution (7 ) .  a =O.OkT. (B) Circles. o = O . O k T ,  Uiangles. r = 3.51iT; 
squara, o = 7.0kT; filled symbols, distribution (6); empty symbols. distribution (7 ) .  

currents is accompanied by the elimination of individual carrier walks with low number of 
jumps, and by the appearance of a monotonically decaying tail of individual walks with 
higher than average number of jumps (cf figure 2). As a rule, less than 0.3% of the injected 
carriers perform occasionally more than, say, five times the most probable number of hops. 
In contrast, increasing L I D  does not eliminate the shortest carrier walks (figure 9),  and 
the tail of long walks becomes a uniform distribution, extending to more than ten times 
the most probable number of hops. For L j D  = 3.0 and c = 0.1 the tail of long walks 
extends uniformly up to IO5 hops (the maximum number allowed by the length of the 
storage vector). Such a dependence of the distribution of the total numbers of hops on L I D  
originates from the superposition of the contributions from subsequent slices of the layer of 
various centre concentrations. 

The behaviour of the characteristic features of the current profiles shows that the 
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Figure 8. The effective TOF as functions of concentration c (A) and non-uniformity parameter 
L I D  (E). Empty symbols. uniform spatial centre distribution ( L I D  = 0.0); filled symbols. non- 
uniform spatial distribution ( L I D  = 1.0). Circles. a = O.OkT; uiangles. a = 3 S k T ;  squares. 
d = 7.0kT. 

Figure 9. Histog"s of the total numbers of jumps performed by the carriers between x = 0 
and x = L for a = O.OkT and a = 3 S k T  as functions of the non-umformity p m t e r  L I D .  
Hopping cenve density c = 0.2. 

dispersion originates from increasing U ,  decreasing c, and increasing degree of spatial 
non-uniformity L I D .  If a large amount of dispersion is due to a wide centre distribution in 
energy (U > 7.0kT),  the overall shape of the current profile, as well as the effective TOF, 
are hardly influenced by the spatial non-uniformity of the total centre density, independent 
of the presence, or lack of, positional disorder. For narrower Gaussian distributions 
(2.0kT < U < 5.0kT) the effects due to the spatial non-uniformity are important. despite 
the low-concentration limit. where they are covered by the effects due to a significant 
positional disorder. With no, or low energetic disorder (O.OkT Q U < 2.0kT) the influence 
of the spatial non-unifonpity on the current profiles is most distinct, and persist even in 
very dilute systems. Thus, for given c, the influence of the variations of the total hopping 
centre density over the layer thickness increases with increasing temperature, which reduces 
the a l k T  ratio. 
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4. Coneluding remarks 

Hopping transient currents measured in the classical TOF experiment are highly sensitive to 
the spatial macroscopic scale variations of the total centre concentration, as has been shown 
above for a special case of the Gaussian distribution of the centre energies. The detailed 
shape of the transients depends in a complicated way on the system dilution, the width of 
the energetic centre distribution, and the spatial variations of the total centre concentration. 
It should be underlined that our simulations have been performed for extremely thin layers 
(70 lattice constants, which for the data we used correspond to - 5 x lo-* m), and the 
influence of the spatial non-uniformity on the TOF transient currents for thicker layers should 
be studied in future. 

It seems that, even having at our disposal analytical expressions for the currents, 
developed for certain one- (or more) parameter families of the shape functions S ( x ) ,  it 
would be very difficult to determine univocally the spatial centre distribution from the 
measurement results obtainable within the TOP experiment alone. However, the qualitative 
results shown in the present paper suggest that the existence of the spatial non-uniformity of 
the layer could be recognized by the observation of  the changes of the TOF current shape with 
increasing temperature. At higher temperatures the transients show lower dispersion due to 
the energetic disorder, and the characteristic features of the x-dependent total centre density, 
such as the polarity dependence, or the appearance of  the cument maxima or plateaux just 
before the effective TOP, become more pronounced. 
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